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ABSTRACT

A principal components (PC)-based transformation was previously introduced for mapping high-dimensional hyper-
spectral imagery (HSI) into 3-dimensional colorimetric displays [Tyo, Diersen, and Olsen, SPIE vol. {132, Descour
and Shen, Eds., 2001, pp. 147-156]. In this study, the previous work is extended to examine the conical nature of HSI
data in the PC-based space. Picturing the data as conical provides insight as to the location of the origin of the cone
(which might not be included in the data) and the point of shade. Once the origin of the cone is located, the PC-based
color transformation is more stable with respect to hue constancy. Strategies are introduced to make the method
invariant, i.e. to ensure that important scene constituents appear with consistent and intuitive presentations.
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1. INTRODUCTION

Hyperspectral imagery (HSI) has emerged as a potentially powerful tool for locating and identifying objects and
materials in remotely sensed imagery. While numerous tools have been developed to classify materials and locate
objects in HSI scenes, the most common strategies for displaying the information involve mapping some subset of
the HSI data into a grayscale or RGB image, with the possible addition of cues to the image to direct attention to
particular areas of interest.

HSI data is vastly different from conventional visible spectrum imagery. First, HSI sensors have hundreds of
spectrally narrow and contiguous spectral bands, providing high spectral resolution data about the material makeup
of objects within a scene.! Second, the sensors often extend to regions of the spectrum where the human vision system
is not sensitive, namely the near, short-,2® mid-, and long-wave infrared* and ultraviolet® spectral regions. There
is a long history of interpreting infrared imagery, but in the past the sensors have been panchromatic and intensity
could be related to temperature and emmissivity. With HSI data, there is spectral structure in these regions, and a
new approach must be developed to present that variation in the final imagery.

The two most common approaches to mapping HSI data into pseudocolor involve mapping band data or principal
components data at each pixel into a RGB triple. In the former strategy, the user would select three HSI bands
in the hopes of capturing either large-scale image variations or particular spectral features. An example of such a
mapping is presenting a long-, mid-, and shortwavelength visible band as and RGB image. This approximates what
a human observer would see if they were actually looking at the scene. An example of this mapping strategy are
shown in fig. 1. This class of mapping strategy can be very powerful, as highly specialized colormaps can be designed
that are tailored to particular applications, such as locating a specific spectral feature throughout a scene. However,
there are some drawbacks associated with this strategy. First, any spectral feature that does not overlap with chosen
bands will not be represented. Second, there is no a-priori way to predict the color representation in the final images
or interpret them.

A second strategy attempts to solve some of those drawbacks. It involves taking a principal components (PC)
transformation and mapping the resulting PC images into an RGB triple. Examples of such images are presented
in fig. 2. The PC images are formed by diagonalizing the covariance matrix of the data, and projecting the HSI
scene onto the resulting (orthogonal) eigenvectors. The eigenvectors are linear combination variables that include
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Figure 1. Two common three-color mapping strategies. The data is HYDICE data from Davis Monthan AFB. The
first image maps bands at 630 nm, 550 nm, and 450 nm into R, G, and B. This is an approximation of what a human
observer would see. The second image presents bands at 600nm, 1000 nni, and 2000 nm, and shows widely spaced

spectral bands.

Figure 2. Mapping PC images into RGB triples. A. The HYDICE DM data with the 1%t PC mapped into red,
2" PC into green, and 3 PC into blue. B. SWIR (1.9 - 2.5 um AVIRIS) data from Cuprite, NV.
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the spectral features that contribute most to the scene variance. They represent statistically uncorrelated channels
and are ordered in decreasing amounts of scene variance. The derived variable sample information from across the
scene, and reduce the chances that an important spectral feature (from a variance standpoing) will be missed in the
final representation. The problem with the mappings in fig. 2 is that they map orthogonal data (PC images) into
non-orthogonal display channels (RGB intensities). The result is an image that is often difficult to interpret.

Recently, a PC-based strategy was presented that sought to eliminate the problems associated with the above
mapping.® That strategy exploits the similarities between HSI data and human color vision. The orthogonal PC
channels are mapped into orthogonal display channels in an ergonomic manner. The end goal is to derive an
invariant mapping strategy for HSI data that consistently and intuitively represents important scene constituents in
the final scene. Advanced processing methods can simultaneously be applied to the HSI data, enabling overlay of
identification information. In section section 2 the mapping strategy is reviewd. In section 3 the data is examined in
the transformed space and analyzed for suitability for colorimetric mapping. Section 4 contains descriptions of two
new tools being investigated for use with the strategy in order to achieve invariance. Discussions and conclusions are
in section 4 and 5 respectively.

2. PC-BASED MAPPING STRATEGY

The close relationship between HSI data and human color vision was discussed previously.® A PC analysis of the
human photoreceptor spectral response produces three statistically orthogonal channels — one that is roughly achro-
matic, one that is a difference between long- and mid- wavelength spectral content (red - green), and a third that is
trimodal, and nominally represents the difference between short- and mid- wavelength information (blue - yellow).”
These three orthogonal dimensions can be used to define orthogonal directions in a 3-dimensional, conical data space.?
The three coordinates hue (angle within the R-G/B-Y plane), saturation (radius in the R-G/B-Y plane divided by
total intensity), and value (total intensity) give location within the cone and are commonly used for constructing
pseudocolor images.

Analysis of HSI data yields a 1°¢ PC that is usually related to the average scene illumination. That channel typi-
cally has slow spectral variation (except in atmospheric absorption bands) and closely resembles the solar distribution
convolved with the atmospheric transmission. When an image is dominated by a particular material, that spectral
signature might also contribute significantly to the scene variance and may show up in the 15 PC as well. The 1°* PC
image contains a basic panchromatic intensity image and has much of the high spatial frequency information often
associated with geography. Successiveley higher PCs tend to have more rapid spectral variations. The higher PCs
also have lower-spatial frequency information that is typically associated with regions of like spectral content. The
close analogy between the HSI and color vision analyses leads to the proposed mapping strategy

¢ = atan (&) - H
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where P;, P;, and P3 are the 15t | 2" and 3™ PC values and H, S, and V are the hue, saturation and value. The
basic properties of this transformation have been discussed previously.®

3. CONICAL DATA SPACE

The transformation in (1) projects the high-dimensional HSI data into a 3-dimensional conical space. That space
is tightly bunched about the P; axis, since the variance associated with the 1% PC is often in excess of 90% of the
total scene variance.5

To illustrate the effects of this transformation on HSI data, the 50-band AVIRIS data of Cuprite, NV, that is
distributed with the ENVI software package has been analyzed. This data covers portions of the SWIR spectrum
from 1.9 - 2.5 um. A scatterplot of the data in 3-dimensional space is presented in fig. 3. The data in fig. 3 represent
11—2 of the total pixels so that the major trends can be seen. An implementation of (1) for this data is presented in
fig. 4.
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Figure 3. Scatterplots. A. Cone projected onto the > — Py plane, B. P, — P, plane. C. 3 — P, plane. The
numerical values presented here represent absolute projections of the HSI data at each pixel onto the eigenvectors of
the covariance matrix of the data with no scaling or translation.

Figure 4. Four representations of the AVIRIS Cuprite data using (1). A. Full implementation with saturation
stretched to maximum dynamic range. B, Suppression of saturation information by setting S = 1 everywhere. C.
Hue only, setting S =1 and V' = 1 everywhere. D. Projection of (1) into the B — Y plane.
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Figure 5. Five different material mean spectra obtained by averaging over a ground-truthed region of the data. A.
Mean spectrum. B. Residual remaining after subtracting the projection of the mean spectrum onto the 1% PC

3.1. Location of the Origin

The conical nature of the data in fig. 3 is highlighted by the lines drawn through two major groups within the data.
The green data represents a collection of pixels from the mountainous region in the top right of the image. The
views from the side of the cone (fig. 3B and C) indicate that these points are radiating out from a common origin.
The two groups of red pixels in fig. 3 represent high- and low-intensity pixels with similar spectral features. The
brighter of the two is from the playa region on the bottom right of the image and the darker is from the dark spot in
the center of the image. These two groups seem to lie in a common direction within the cone in panels B and C of
fig. 3, and a linear fit to these data is drawn in the scatterplot in red. Even though the lowest intensity (P;) value in
the image is at a digital number of 1732, the two lines extrapolate back until they almost intersect near the P, =0
plane. However, this point of intersection is not at P, = 0, P3 = 0, rather it is offset somewhat and represents the
“point of shade,” or the vertex of the cone. Once the vertex of the cone is found, the values of ¢ and p in (1) should
be referenced to that vertex. The image presented in fig. 4 has been reoriented accordingly.

The method of finding the vertex described above might be termed semi-autonomous. The manual part of the
process involves identifying pixels with like spectral characteristics that can be assumed to lie in the same direction
within the cone. Once those pixels have been identified, the least squares regressions can be computed automatically
to locate the origin. This process is laborious and somewhat subjective. A means of finding the origin completely
automatically is the subject of future research.

3.2. Material classification

The procedures outlined in this study are not a classification method per se; however, the manner in which various
materials are presented is of interest. A number of pixels have been identified from gound-truth observations as
containing specific materials.[NEED THE REF| A set of seven regions of interest (ROIs) is distributed with ENVI.
The mean spectrum in each of these regions is presented in fig. 5. To find the region of the scatterplot of fig. 3
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| Material | L-P|L-P,|L-P;J| Angle | Saturation || Color |

Calcite 4010 | -96 | -76.6 || —143° | 0.030 Y
Alunite 3810 | 169 | 217 | 52.8° 0.073 f
Kaolinite 4060 | 294 | -34.1 || —5.46° | 0.073 & |
Buddingtonite | 3980 | -79.0 | 301 104° 0.080 .—
Silica 4990 | -217 | 29.2 || 170° 0.032
Playa 6020 | -196 | 69.0 || 159° 0.035 |30
Varnished Tuff | 3590 | -176 | 92.2 | 151° 0.056 =

Table 1. Projection of the mean material spectra on the first three PCs, as well as angle in the P, — P; plane as
indicated in the scatterplot of fig. 3.
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Figure 6. The scatterplot of fig. 3 with the x- and y-coordinate normalized to the z-coordinate. The effect is to turn
the cone if fig. 3 into a cylinder. Each point in the scatterplot is colored the same as in the mapping of fig. 4A. The
data set has been thinned by a factor of 20 to aid in viewing. Unsaturated (gray) pixels are those near the origin,
and particular hues radiate outwards. A. P, — P, plane. B. P; — P, plane. C. P, — P; plane. The lines represent
the average material spectra from table 1.

corresponding to each of these mean spectra, a projection is taken on the first three PCs. The residual spectra is
defined here as the portion of the radiance vector orthogonal to the P, axis. It is computed by

Xpesida = X — (KTXI) AR (2)

Classification information is held in the residual spectra. For each of the materials, an angle in the P, — P3 plane
was computed by taking the appropriate projections (referenced to the origin found above), and the results are
summarized in table 1.

The scatterplot of the data is shown again in fig. 6 projected onto the P; — P; plane. Each point in the scatterplot
is colored with the same (H, S, V') values as the corresponding pixel in fig. 4A. Lines radiation from the origin to the
location of the ROI means in table 1 are also superimposed on the data.
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4. DISCUSSION

The strategy outlined above has several advantages and disadvantages that are worth mentioning. First, the mapping
capitalizes on similarities between the PC channels in HSI and color vision to create an ergonomic strategy that
preserves orthogonality relationships in the final mapping. The spatial frequency structure of the PC images in
HSI nicely match the spatial sensitivity of the corresponding color channels. This match points towards a possible
compression strategy, namely a hybrid spatial/spectral compression scheme that uses information about the spatial
frequency structure of higher PC channels to reduce noisy and/or less important data from a scene. This is the
strategy that has been utilized by human vision. High spatial frequency information that is presented in the (R —
G) and (B ~ Y) channels is not readily perceived,’ helping to minimize the bandwidth necessary to process color
scenes.”

Fig. 6 and table 1 demonstrate the classification features of the PC based strategy defined above. Materials
with significant spectral differences will map into hues that are well-separated, and materials with similar spectral
features map into similar hues. This feature can also be a negative, though, as closely related materials that can
be reliable differentiated using some processing strategy may not be as distinguishable using the mapping described
above. However, the mapping discussed here is not a classifier in that it does not make a decision about the presence
or absence of any particular material in a pixel.

One of the features of fig. 1 and fig. 4A that makes them more accessible to human observers is that much of
the image is largely desaturated (gray). In contrast, the images in fig. 2 are highly saturated everywhere, giving
rise to apparent smearing between colors. Regions of the image that do not have any significant spectral deviation
from the average illumination have little or no projection onto the 2°4 and 3¢ PCs that determine the color in (1).
Hence, they are not represented with pure hues. The mapping presented in fig. 4B suppresses saturation, allowing
determiniation of the hue that most closely matches each pixel. In that way, the parameter saturation is equivalent
to a confidence measure in the same sense that the parameter hue is equivalent to a material classification.

There is a fundamental problem associated with the mapping of high-dimensional HSI data into a pseudocolor
image. Because of the 3-dimensional nature of color vision, any strategy must be lossy in that the full dimensionality
of the HSI data cannot be represented. Furthermore, typical HSI sensors collect data from outside the visible
spectrum. This means that at least some information must be presented that the human observer is not used to
interpreting. A good example of this is highlighted with the Cuprite data analyzed above. The entire data set is
from the SWIR (1.9 - 2.4 um). In the visible portion of the spectrum, this is a very uninteresting scene and appears
almost uniformly as a dull brownish color. The mappings presented in fig. 4 force color where none existed before,
and this strategy will necessitate some training of observers for maximum benefit.

4.1. Invariant Display Strategies

The long-term goal of this project is the development of an invariant display strategy that can be broadly applied to
HSI data. The direct implementation of (1) is not an invariant strategy, since the PCs are calculated from in scene
statistics. Furthermore, implementation of (1) does not guarantee that materials are going to be presented in hues
that are intuitive to the observer. For example, what happens if water just happens to map into a hue associated
with the color red? Below we discuss two new techniques that are being investigated to hande these problems.

4.1.1. In-Scene vs. Non-In-Scene Eigenvectors

The derived eigenvectors are different for every scene, therefore a single spectrum would have different representations
from image to image. Analysis of several contiguous scenes from Davis Monthan AFB demonstrated that the first
three eigenvectors had significant variations even in scenes where there is a large amount of spectral correlation.!®
When comparing two dissimilar scenes, the differences can be quite severe. Ideally, a set of orthogonal eigenvectors
could be developed that capture a large part of the spectral information for a variety of applications. These eigen-
vectors could be used to create a standard mapping similar to the tasseled cap transformation that is commonly
applied with multispectral LANDSAT imagery.!!

As an example, consider the scene presented in fig. 7. The scene is a full AVIRIS image cube of a shore region of
Lake Tahoe, CA. It is a relatively simple scene with water in the upper left, forest in the lower right, and a shoreline
transition region. Fig. 8 shows the eigenvectors from the scene covariance matrix. There are important features of
the target spectra that deviate markedly from the mean solar spectrum. Because the scene is dominated by two
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Figure 7. Images of Lake Tahoe, CA. A. RGB image using bands at A = 639nm, A = 549nm. A = 429nm. B.
Post-rotated version using (1). Hues were rotated after transformation to ensure that the water was “blue” and the
forest was “green”. The only post processing that occurred was a rotation of the hue by 75°.

Eigenvector
@

0.2 T T T T T T T : T T

‘400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Figure 8. First three eigenvectors from Tahoe scene. A. Eigenvectors computed from in-scene statistics. B. First
eigenvector determined externally (extracted from Davis Monthan AFB average radiance). In panel B, the 2" and
3 eigenvectors were determined from in-scene statistics. Note that in panel A, the first eigenvector is largely
influenced by the chlorophyll absortption feature in the NIR. Also note that in the SWIR, the 2" eigenvector in
pancl B has much less weight.
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primary constituents, the 15 eigenvector has spectral features of the targets as well as the illumination (namely the
chlorophyll absorption feature in the visible).

As a step in developing an invariant strategy, a standard 1 eigenvector that is computed from known solar and
atmospheric properties was forced on the data. This was accomplished by means of a Gramm-Schmid orthogonal-
ization whereby the covariance matrix of

y=x—-(x-9)¥ : (3)

was orthogonalized. In (3) x is the data vector and ¥ is a unit vector corresponding to a reference spectrum obtained
by some other method (in this case the first eigenvector was taken from an HSI image of Davis-Monthan AFB). The
new reference eigenvectors are depicted in fig. 8C. The target information has been removed from the first eigenvector
and now all target information appears in the second and third channels. *. Similar steps could be performed to
create the 2" and 3¢ eigenvectors, and the resulting transformation could have a colorimetric mapping that is
stable, intuitive, and ergonomic.

4.1.2. Post-Rotation of the RGB Data

Sometimes it may be desired to use the in-scene statistics to compute the eigenvectors for transformation. These
eigenvectors give the best ordering of the in-scene variance, and highlight the most important features of the particular
image. However, use of in-scene statistics will lead to colormaps that are not always intuitive. A method for
overcoming this difficulty is proposed in this section.

When the spectral data includes bands in the visible, a 3-color composite image can be constructed that closely
mimics what a human observer would see. In fig. 7, an important scene constituent is the water. The color
transformation can be rotated to ensure that the materials that closely resemble water are presented with a particular
hue, i.e. the color blue. The mapping presented in fig. 7B was computed using such a post-rotation. The 2°¢ and
3'd eigenvectors were still obtained using in-scene data. If a strategy is developed to arrive at global eigenvectors,
then (1) can be appropriately modified to ensure that important materials are presented in a standard form. We are
also exploring a strategy that using the data from the visible spectrum to automatically implement this rotation, as
introduced by Diersen.!?

5. CONCLUSIONS

A colorimetric display strategy based on principal componenets analysis and mapping previously introduced has been
discussed.® The conical data space that is implied in this mapping has provided information about the structure of
the data. A supervised method for locating the origin of this cone has been developed, and might be important for
locating the point of shade in HSI data. The mapping was shown to differentiate between certain types of materials,
and represent the result in an ergonomic fashion.

There remains significant work to develop an invariant display strategy based on PC analysis. All methods
implemented thus far rely in some fashion on in-scene statistics, which by-definition are not invariant. Strategies
were discussed above to overcome this limitation, and are currently under investigation.
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